

Assessment

Peter Mann

Head of Product Compliance

The Paul Wurth Group is one of the world leaders in the design and supply of the full-range of technological solutions for the **primary stage of integrated steelmaking.**

Paul Wurth Products & Services

Feasibility studies	Conceptual, basic & detail engineering	Project management	Plant & components supply	Fabrication of key compon- ents in dedicated workshops	Turnkey projects	Assistance in plant assembly & commission- ing	Technology & operation consultancy	After-sales services
------------------------	--	-----------------------	---------------------------------	--	---------------------	--	--	-------------------------

Paul Wurth history

	1870	Eugène Muller builds a boilermaking facility in Luxembourg Hollerich, known as "Kesselfabrek".				
Organic growth	1890	Business is taken over by Paul Wurth. The firm specialises in metal erection works , especially the construction of metal bridges and blast furnace shells.				
	1951	Paul Wurth acquires from a British firm the licenses needed to supply complete blast furnaces with all the accessories.				
	1954	Construction of a first blast furnace at Seraing in Belgium.				
	1969	Invention of the Bell Less Top [®] charging system, which revolutionizes iron & steel industry the world over.				
	1977	First subsidiary (Brazil) – development of sales & engineering network.				
1al growth (2000– 2014)	2003	Creation of TMT Tapping – Measuring – Technology.				
	2004	Fabrication activities transferred to Arcelor Dommeldange. Paul Wurth becomes a pure engineering company .				
	2004	Integration of Didier - M&P Energietechnik specialised in hot blast stove technology and refractory & lining concepts (Paul Wurth Refractory & Engineering GmbH)				
	2005	Take-over of the blast furnace, coke making and direct reduction activities as well as the staff from SMS Demag S.p.A. and creation of Paul Wurth Italia S.p.A.				
	2009	50.4% shareholding in CTI Systems , specialised in automated intralogistics systems. In 2011, stake increased to 75.2%. In 2013, stake brought to 100%.				
Exter	2012	Creation of Paul Wurth IHI Corp., Ltd in Japan.				
	2012	Paul Wurth becomes part of the SMS group.				
	2014	Construction license for Midrex [®] direct reduction plants				

- About 1 700 qualified staff
- 26 Group members in 15 countries, incl. 19 operational entities
- Joint ventures: TMT, Paul Wurth IHI, VCL, P&A Industrial Engineering, Paul Wurth Kovrov, Amova
- Other countries covered by Representations

Execution of Product Compliance / CE Conformity Assessment $\mathbf{C} \mathbf{E}$

Step 1: Definition of information/requirements

- Country of use
- Kind of project (new installation, revamping)
- Kind of equipment (partly completed or completed machinery, pressure equipment, steel structure, major project)
- Kind of manual to be submitted (instruction manual, incorporation manual)
- Expected date of delivery or commissioning

Step 1: Definition of information/requirements

- Directives to be applied:
 - Machinery Directive 2006/42/CE
 - Pressure Equipment Directive 2014/68/EU
 - Electromagnetic Compatibility Directive 2014/30/EU
 - Low Voltage Directive 2014/35/EU
 - Construction Products Regulation 305/2011
 - ATEX Directive 1999/92/CE)

Step 1: Definition of information/requirements

- Kind(s) of risk analysis to be executed
- Kind of declaration to be submitted (Declaration of Incorporation/Conformity, out of Europe certification)
- Responsible for the CE conformity check on site
- Kinds of calculation/execution standards to be applied (EN 13445, EN 13480, EN 1993/EN 1090)

Step 2: Execution of risk analysis (acc. to EN ISO 12100 and/or EN ISO 61511-3) in an iterative process

- Determination of the limits of the equipment
- Identification of risks
- Evaluation of risks
- Elimination or reduction of the risks

, <>``

Definition of harmonized standards to be applied

Step 3: Engineering acc. to the results of the risk analysis – definition of the safety measures e.g.

- EN 1993/1090 "Steel structures"
- EN 13445 "Pressure vessels"
- EN ISO 14122-x "Permanent means of access to machinery" for walkways, stairs etc.
- EN ISO 14120 "Guards" for fencing etc.
- EN ISO 4413 "Hydraulic fluid power"
- EN ISO 13850 "Emergency stop"
- EN 60204 "Electrical equipment of machines"

Step 3: Engineering of the control system acc. to

- EN ISO 13849-1/-2 "Safety related parts of control system": definition and validation of a Required Performance Level PL,
- EN ISO 61511-3 "Functional safety in the process industry": definition and validation of a Safety Integrated Level SIL

, <>``

Step 3: Procurement acc. to the results of the risk analysis – definition of the safety measures e.g.

- Purchasing at suppliers with the required certifications
- Requesting of required certifications by Notified Bodies
- Purchasing of parts with the required CE certificates
- Compiling of the required documentation

Step 4: Preparation of the manuals

- Incorporation Manual (for machinery only in case of partly completed machinery): language can be defined contractually
- Instruction Manual: acc. to Machinery Directive must be in customer's language, other directives vary
- Documentation of purchased parts

Step 5: Compiling of the technical documentation

- Layout
- Drawings, bills of materials, spare parts

, ~

- Material certificates
- Welding certificates
- Static calculations
- Instruction manual
- <u>Risk analysis</u>

Step 6: Acceptance by customer and/or authorities

Is the machine/installation working safely?

, <>``

- Are there still any risks that can be avoided (e.g. installation of a protective grid)?
- Are all safety references (e.g. signposting) installed?
- Are there any risks "forgotten" to be mentioned in the instructions?
- (Documentation of safety devices by photos/videos)

