

Luxembourg: a pioneer in space

BCFL meets Luxembourg Space Cluster Luxembourg Embassy in Paris 21 June 2017

Luxembourg space landscape

Luxembourg has been active in space for more than 30 years

- 1985: Creation of Société Européenne des Satellites (SES)
 - First launch in 1988 (ASTRA 1A)
 - •2001 acquisition of GE Americom
 - •2006 acquisition of NewSkies
 - •Today, one of the largest geostationary satellites operators
- 2000: Cooperation agreement with ESA to participate in the ARTES programme (telecom)
- 2004: Signature of the adhesion agreement
- 2005: Luxembourg becomes the 17th Member State of ESA
- 2008: First National Action Plan for Space R&D
- 2012: ESA co-Presidency with Switzerland
- 2014: ESA Ministerial Council in Luxembourg
- 2015: Presidency of EU Council

Luxembourg: a Pioneer in Space + 27.06.17 3

It has developed a solid industrial and research landscape ...

- SES, wordwide leader in satcom and one of the largest geostationary satellites operators
- ~30 private companies active in the space, ground and downstream segments
- Several R&D laboratories within the Public Research Organisations LIST and Uni.lu
- Industry group for the aeronautic and space industry: GLAE
- Luxembourg Space Cluster

... with competencies along the whole space value chain

Space Segment Technology	Ground Segment		Catalogue on space capabilities Full information on: www.spacecluster.lu	LUXEMBOUR SPACE CAPABILITI
 Structures (satellite, instrument) Support panels for solar arrays Heat exchanger / radiator panels Solar Sail Material Electric propulsion Sub-systems 	 Deployment & commissioning Maintenance services Flight operation & payload data ground 	Services / Applications		TURNING INNOVATION INTO BUSINESS 2017
AIS & ADSB receivers Telemetry, Telecommand & Banging sub systems				
Ranging sub-systems System level Micro-satellites (<100 kg) Satellite simulator AIT means Mechanical and Electrical Ground Support Equipment		 Satellite services Satellite engineering & Launcher procurement Flight Dynamics Transfer Orbit Services & In-Orbit Testing (IOT) Hosting & Teleport Services Satellite Broadband services 	 Applications Environmental monitoring & Management (Land & Forest; Atmosphere; Floods) Transport Management & surveillance Satcom for Crisis Management & Humanitarian Aid Location based services 	

Luxembourg: a Pioneer in Space + 27.06.17 5

The national space action plan defines strategic policy objectives and defines a few key thematic priorities

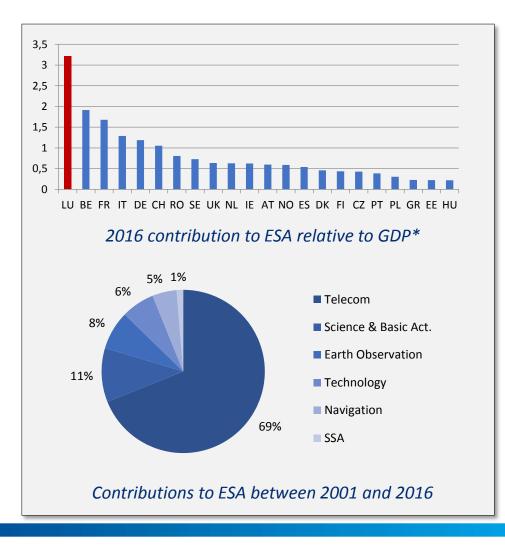
National space policy objectives

- Contribute to the diversification and sustainability of economic activities in Luxembourg
- Consolidate and valorise the existing competencies in the domain of media and telecommunications
- Contribute to **reinforce the competitive position** of industry and public research organizations in the space sector
- Expand competencies in the sector
- Integrate Luxembourg entities in international networks

Key thematic priorities:

- Value added services using satellite data & infrastructures
- Ground equipment (Stations, MGSEs)
- Satellite equipment (Structures, Electric propulsion)
- Microsatellites (Platform and payloads)
- Utilization of space resources

Instruments:


- National Programme LuxIMPULSE
- ESA programmes
- ESA Young Graduate Trainees
- EU space programmes
- EU Horizon 2020
- Bilateral and multilateral cooperation

Luxembourg is an active member of ESA

- 6 May 2004: Signature of the adhesion agreement
- 30 June 2005: Luxembourg becomes the 17th Member State of ESA
- 20 Nov. 2012: ESA co-Presidency with Switzerland
- 2 Dec. 2014: ESA Ministerial Council in Luxembourg
- 1-2 Dec. 2016: ESA Ministerial Council in Lucerne

Luxembourg: a Pioneer in Space + 27.06.17 7

* Total contribution to ESA compared to the contribution to the mandatory programmes (based on GDP)

Luxembourg Space Resources Initiative

Titre de la présentation

In February 2016, Luxembourg announced its intention to study and promote the utilization of space resources

Space resources can be found on many celestial bodies...

- Abiotic materials that are present on asteroids, the moon or other celestial bodies, and that can be extracted (e.g. metals, gas, water, ...)
- More generally, space resources can also include solar energy, radiations, gravitational waves, etc.

Images: NASA: RecentlySpotted Asteroid NoRiskforEarth | File:Full Moon Japan.jpg-Wikipedia

... and be used on Earth

Rare metals (e.g. Pt, Pd, ...), gases (He-3)

- To guarantee the continous access to rare materials once the resources on Earth will be exhausted
- Positive environmental impact on Earth

... as well as in space

Water, Fuel/propellant Building materials

- To support the current space industry
- To support robotic and human exploration of space
- To enable a new economy in space

Images: Whole world -landandoceans.jpg-WikimediaCommons /media/images/Channel4/c4-news/2014/March/27/27_ solar_system _r_w.jpg

Current space activities are limited by the launchers... Space resource utilisation will break this limit!

Launcher-related limitations to activities in space

- Current satellites / spacecrafts have to fit into the fairing of rockets
 - Limits the size to a diameter of around 5 m
 - Need of mechanically complex deployment mechanisms (e.g. for solar panels)
- Current launch costs are extremely high
 - Launch costs, typically ~10 000 \$/kg
 - Heavy launcher: ~100 M\$
- This is also true for propellant (for living, for propulsion)

... and how utilization of space resources might help

- No need to launch everything from Earth
- Manufacturing of structures in space
 - Size becomes quasi unlimited
 - No need for complex mechanisms
 - Micro-gravity allows structures that are not possible on ground
- Water can be sourced from asteroids or the Moon, and used for life support and as propellant (O2 & H2)

Newly developed technologies can bring short-term business opportunities in the current space and terrestrial markets

Space applications

- Higher performance
- Lower costs
- Miniaturization
- Mass / Power optimization
- More autonomy & flexibility
- In-orbit servicing
- ...

intuge . Es

Technologies needed for space resources exploration and utilization

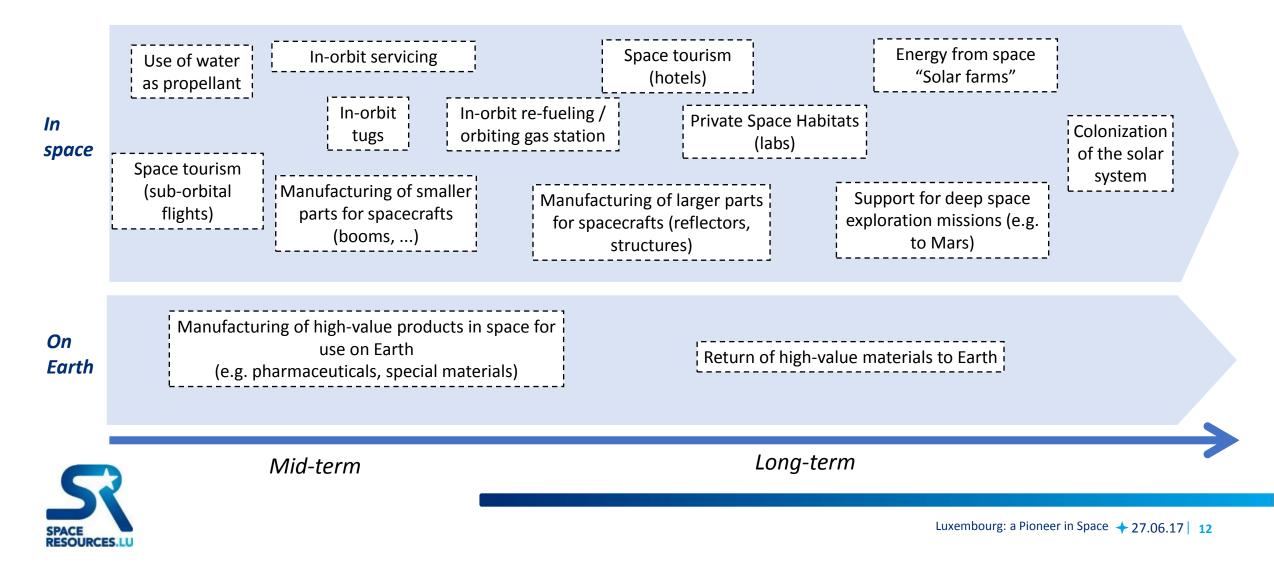
- Robotics, autonomous systems
- Artificial intelligence
- Failsafe systems
- Telecommunications (Optical, data relay)
- High-performance computing / Data analysis
- Remote sensing
- In-situ sensing

• ...

- Propulsion systems
- Innovative energy systems
- Innovative Materials
- 3D printing/ Additive manufacturing

Terrestrial applications

- Mobility
- Transport
- Agriculture
- Manufacturing
- Insurance
- Security
- Energy


• ...

- Oil&Gas, Mining
- Infrastructure

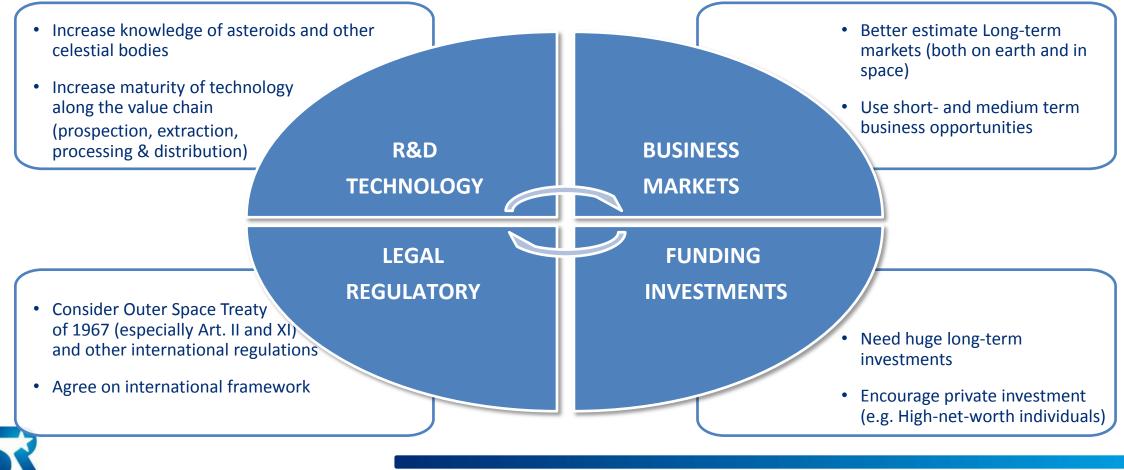
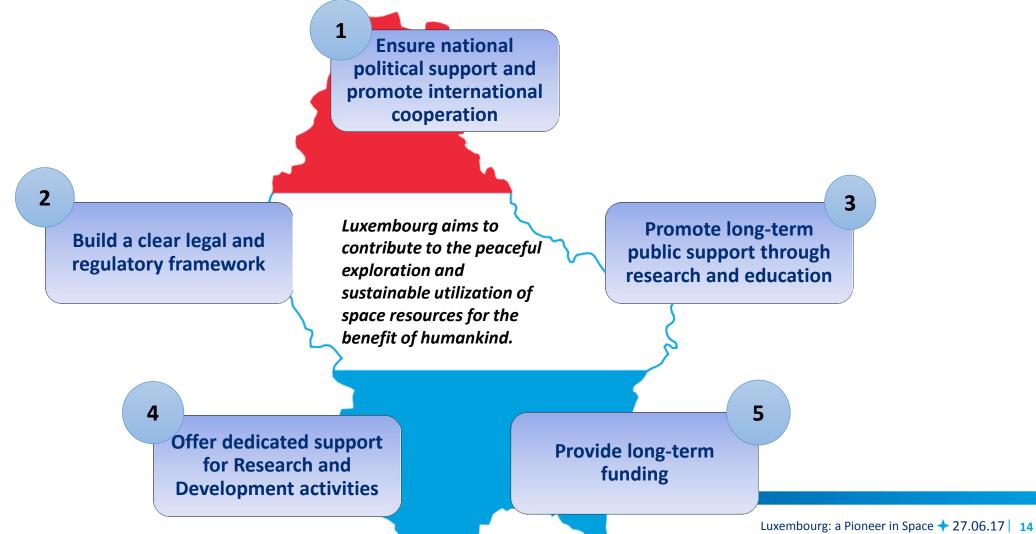


Image: Whole world -landandoceans.jpg-WikimediaCommons

In the mid- and long-term, completely new business models and applications will develop in space and on Earth



Many challenges need to be tackled for an operational use of space resources at an industrial and commercial scale

Luxembourg aims to position itself as a European hub for the utilization of space resources, working along 5 main pillars

Space resource utilization: let's make it happen!

For further information: Dr. Mathias LINK Dr. Marc SERRES

> THE GOVERNMENT OF THE GRAND DUCHY OF LUXEMBOURG Ministry of the Economy Directorate of ICT and Space Affairs 19-21, boulevard Royal ; L-2449 Luxembourg Tél. (+352) 247-74130 mathias.link@eco.etat.lu marc.serres@eco.etat.lu

Thank you for your attention

www.spaceresources.lu